

Digitisation of Text and Images

Simon Mahony From an original document by Claire Warwick

This document is part of a collection of presentations with a focus on Electronic Publishing. For full details of this and the rest of the collection see the cover sheet at: http://humbox.ac.uk/3078/

How do Resources become Digital?

- Digitisation
- Introduction to the digital image
 - History
 - Files and formats
- Scanning Techniques
- Digitising Text
- Digitisation Issues

What is digital?

"Of or pertaining to a finger, or to the fingers or digits."
 OED (sv1) online

• "Of, pertaining to, or using digits; *spec.* applied to a computer which operates on data in the form of digits or similar discrete elements." OED (sv2) online.

What is digitisation?

- The process of creating a binary representation of an object that can be stored, manipulated, transmitted, and displayed, using electronic technologies.
 0101010101010101000111010
- Usually used to refer to the process of sampling an object to create a digital image.
- Not a perfect copy, but a translation
 - Information can be lost and inserted

Why Digitise?

- High information content
- Significant proven public and educational benefit
 - increase resource accessibility
 - enhances ways in which contents can be studied, manipulated, or accessed
- where material is at risk
 - conservation of heavily used material?
 - existing storage medium is deteriorating?
 - possibly measure that deterioration

What to Digitise

- Printed books & journals
- Manuscripts
- Maps
- Photographs
- Transparencies
- Music manuscripts
- Woodcuts

- Line drawings
- Archaeological site plans
- Blueprints/Architectural illustrations/plans
- Medical illustrations
- Documents
- Newspapers
- Papyri and Ostraca

Resolution

- Number of horizontal & vertical pixels underlying an image
- Determined by Dots Per Inch (dpi)
- The more pixels captured, the higher the detail

Image Quality

- The higher the resolution, the higher the quality of image.
- But do you need high resolution?

What Resolution?

- 72 dpi internet
- 96 dpi PowerPoint/digital projection
- 150 dpi colour lithographic printing (roughly)
- 175-225 inkjet printing (roughly)
- 300 dpi professional photographic print quality (roughly)
- 600 dpi archival quality
- Best to scan at a higher resolution, then manipulate image in package
- Always save your first scan, and work from copies
- "Scan once for all purposes" process afterwards

Formats

- Basic Data files
 - BMP Bitmap Windows (*.bmp)
 - PICT Picture Mac (*.pct, *.pic)
- Standard Format
 - TIFF Tagged Image (*.tif)
 - standard for archival purposes
 - large file sizes but no loss of data
 - 600 dpi uncompressed tiff desirable
 - 300 dpi uncompressed tiff minimum

Additional Formats

·JPEG - Joint Picture Expert Group (*.jpg or *.jpeg)

- · Good for Photographs
- · Loses lots of data (lossy)
- · can specify quality of image
- ·GIF Graphic Interchange Format (*.gif)
 - Good for blocks of colour
 - can specify particular colours you want to use (lossy)
- Both commonly used on the internet

jpg / jpeg images

Gif images

Simple GIF Source: Wikimedia Commons Animated GIF Source: Wikimedia Commons Creative Commons Attribution-Share Alike 3.0 Unported license

Scanning devices

Microfilm Scanner Flatbed Scanner

Drum Scanner

Microfiche Scanner Transparency Scanner Open Book Scanner

Scanback camera

Scanback camera

Instant capture camera

Devices- Digital Cameras

- Digital Cameras
 - Digital Cameras
 - SLR cameras with digitising backs

Post Processing

- Image optimisation vs enhancement
- Enhance the image: looks good to the eye
 cropping / levels / colour etc
- Optimise the image: take account of the environment in which it is delivered
 - format / file size / resolution etc

Post Processing

- No general theory about image enhancement
- viewer is ultimate judge of how well a method works
- evaluation of image quality is highly subjective
- cannot control how it is viewed
- trial and error approach
- => keep a record of processes used!
- Keep a copy of your original files without processing them
- Keep a copy of metadata about original image

But...

- Time consuming and costly operation
- Does proliferation of data mean that it is harder to find information?
- Where (and who) are the users?
- Usability studies (what do users want/need)?
- Costs of maintenance?
 - Should we just re-digitise every few years as it gets cheaper? (measure deterioration of source material)

Why Digitise Text?

- Edit it
- Manipulate it
- Reproduce it
- Print it
- Search it
- Text Analysis

The Digitisation of Textual Sources

3 ways to acquire electronic text

- 1. Acquiring in electronic form (e.g. from the Internet or from an archive of electronic text)
- ·2. Scanning
- ·3. Keying

How Keying Works

- In-house or outsource?
 - In-house: small project; rare material that should not travel; manuscript material
- Outsourcing text
 - Can send page images rather than originals
- High accuracy levels (Up to 99.995%)
 - About one error every 20 pages
- Basic markup can be added

Advantages of Keying

- High (Up to 99.995%) rates of accuracy
 About one error every 20 pages
- Typically, keyed by two different typists and compared by machine
- Basic textual encoding XML or SGML can be added, costing around 25% more
- But cost also high

When to use Keying

- If the source material is
 - Rare
 - Fragile
 - Oversized or awkward
 - Full of images, special symbols, scientific or mathematical data, or oddly formatted text
 - Handwritten or early printed book text

OCR: Optical Character Recognition

- Image of page scanned then converted into text
- Used for material that
 - Uses a clear modern typeface
 - Is clean and complete
 - No smudges or tears
 - Can be fed through a sheet-feeder
 - Is formatted consistently....

OCR Limitations

- Can be a time saver, but is not perfect
- still a lot of work to convert the text to electronic form (e.g. remove page numbers, spell-check)
- Rarely more than 99.9% level of accuracy (1 error per 1,000 characters, about 10-12 lines)
- Problems with early printed books, mss, newspapers, microfilm

Text? Images? Or Both?

- Images enable use to get a sense of the original
- Often quite readable
- Often contain non linguistic information
- Appropriate for online exhibitions
- Handle special characters and illustrations

Decisions Decisions...

- Evaluate source material and format project goals
 Who are your users? What are their needs?
- Why is the text being digitised
 - To create a copy?
 - To facilitate linguistic analysis?
- What resources are available?
 - Software, hardware, time, money
- Determine what method would be best
 - OCR or Keyboarding
- Decide how the text should be made available electronically to users
 - ASCII? HTML? PDF? SGML? XML?

Management aspects

- Assessing institutional strengths and weaknesses, timetable, and budget (Management)
- Select items from the collection to be digitised (Everything? Most Used? Cherry Picking?)
- Determining quality requirements based on document attributes (Benchmarking)
- Understanding user needs (Presentation, Delivery, Medium, Upkeep)
- Assessing long-term plans (Digital Preservation, Costs, Maintenance, Updates)

Useful links

- Library Preservation at Harvard
 - http://preserve.harvard.edu/resources/digital.html
- Cornell University Library: Moving Theory Intro Practice: Digital Imaging Tutorial
 - http://www.library.cornell.edu/preservation/tutorial/
- Technical Advisory Service for Images
 - www.tasi.ac.uk
- Now: JISC Digital Media
 - http://www.jiscdigitalmedia.ac.uk/

The National Archives

The Doomsday Disc

BBC Television Centre

Assorted legacy videotape at the BBC Archive

